Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 221
1.
MedComm (2020) ; 5(5): e553, 2024 May.
Article En | MEDLINE | ID: mdl-38737469

The generation of chimeric antigen receptor-modified natural killer (CAR-NK) cells using induced pluripotent stem cells (iPSCs) has emerged as one of the paradigms for manufacturing off-the-shelf universal immunotherapy. However, there are still some challenges in enhancing the potency, safety, and multiple actions of CAR-NK cells. Here, iPSCs were site-specifically integrated at the ribosomal DNA (rDNA) locus with interleukin 24 (IL24) and CD19-specific chimeric antigen receptor (CAR19), and successfully differentiated into iPSC-derived NK (iNK) cells, followed by expansion using magnetic beads in vitro. Compared with the CAR19-iNK cells, IL24 armored CAR19-iNK (CAR19-IL24-iNK) cells showed higher cytotoxic capacity and amplification ability in vitro and inhibited tumor progression more effectively with better survival in a B-cell acute lymphoblastic leukaemia (B-ALL) (Nalm-6 (Luc1))-bearing mouse model. Interestingly, RNA-sequencing analysis showed that IL24 may enhance iNK cell function through nuclear factor kappa B (NFκB) pathway-related genes while exerting a direct effect on tumor cells. This study proved the feasibility and potential of combining IL24 with CAR-iNK cell therapy, suggesting a novel and promising off-the-shelf immunotherapy strategy.

2.
Int J Mol Sci ; 25(7)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38612447

Hemophilia A (HA) is a common X-linked recessive hereditary bleeding disorder. Coagulation factor VIII (FVIII) is insufficient in patients with HA due to the mutations in the F8 gene. The restoration of plasma levels of FVIII via both recombinant B-domain-deleted FVIII (BDD-FVIII) and B-domain-deleted F8 (BDDF8) transgenes was proven to be helpful. FVIII-Padua is a 23.4 kb tandem repeat mutation in the F8 associated with a high F8 gene expression and thrombogenesis. Here we screened a core enhancer element in FVIII-Padua for improving the F8 expression. In detail, we identified a 400 bp efficient enhancer element, C400, in FVIII-Padua for the first time. The core enhancer C400 extensively improved the transcription of BDDF8 driven by human elongation factor-1 alpha in HepG2, HeLa, HEK-293T and induced pluripotent stem cells (iPSCs) with different genetic backgrounds, as well as iPSCs-derived endothelial progenitor cells (iEPCs) and iPSCs-derived mesenchymal stem cells (iMSCs). The expression of FVIII protein was increased by C400, especially in iEPCs. Our research provides a novel molecular target to enhance expression of FVIII protein, which has scientific value and application prospects in both viral and nonviral HA gene therapy strategies.


Hemophilia A , Hemostatics , Humans , Factor VIII/genetics , Hemophilia A/genetics , Hemophilia A/therapy , Genetic Therapy , Enhancer Elements, Genetic
3.
J Neurophysiol ; 131(2): 338-359, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38230872

Complex locomotor patterns are generated by combination of muscle synergies. How genetic processes, early sensorimotor experiences, and the developmental dynamics of neuronal circuits contribute to the expression of muscle synergies remains elusive. We shed light on the factors that influence development of muscle synergies by studying subjects with spinal muscular atrophy (SMA, types II/IIIa), a disorder associated with degeneration and deafferentation of motoneurons and possibly motor cortical and cerebellar abnormalities, from which the afflicted would have atypical sensorimotor histories around typical walking onset. Muscle synergies of children with SMA were identified from electromyographic signals recorded during active-assisted leg motions or walking, and compared with those of age-matched controls. We found that the earlier the SMA onset age, the more different the SMA synergies were from the normative. These alterations could not just be explained by the different degrees of uneven motoneuronal losses across muscles. The SMA-specific synergies had activations in muscles from multiple limb compartments, a finding reminiscent of the neonatal synergies of typically developing infants. Overall, while the synergies shared between SMA and control subjects may reflect components of a core modular infrastructure determined early in life, the SMA-specific synergies may be developmentally immature synergies that arise from inadequate activity-dependent interneuronal sculpting due to abnormal sensorimotor experience and other factors. Other mechanisms including SMA-induced intraspinal changes and altered cortical-spinal interactions may also contribute to synergy changes. Our interpretation highlights the roles of the sensory and descending systems to the typical and abnormal development of locomotor modules.NEW & NOTEWORTHY This is likely the first report of locomotor muscle synergies of children with spinal muscular atrophy (SMA), a subject group with atypical developmental sensorimotor experience. We found that the earlier the SMA onset age, the more the subjects' synergies deviated from those of age-matched controls. This result suggests contributions of the sensory/corticospinal activities to the typical expression of locomotor modules, and how their disruptions during a critical period of development may lead to abnormal motor modules.


Muscle, Skeletal , Muscular Atrophy, Spinal , Child , Infant , Infant, Newborn , Humans , Muscle, Skeletal/physiology , Electromyography , Walking/physiology , Motor Neurons/physiology
4.
Oral Dis ; 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38129747

OBJECTIVE: To investigate the genetic causes of 22 patients with clinically high suspicion of X-linked hypohidrotic ectodermal dysplasia from 20 unrelated Chinese families, expand the spectrum of ectodysplasin-A mutations, and provide more evidence for variants of uncertain significance. SUBJECTS AND METHODS: Whole-exome sequencing was performed and potentially pathogenic variants were verified by Sanger sequencing. Western blotting, real-time PCR and immunofluorescence analyses were performed to investigate the preliminary functions of the candidate variants. RESULTS: Nineteen ectodysplasin-A variants were identified, six of which were not previously reported. Among these variants, we identified a patient who carried two mutations in ectodysplasin-A and exhibited more severe phenotypes. Additionally, mutant protein expression levels decreased, whereas mRNA transcription levels increased. Cellular sublocalisation of the variants located in the tumour necrosis factor homologous domain showed that the proteins accumulated in the nucleus, whereas wild-type proteins remained in the cell membrane. A rare indel variant and two classical splicing variants that lead to exon 7 skipping were detected. CONCLUSIONS: This study provides definitive diagnoses for 20 families with suspected X-linked hypohidrotic ectodermal dysplasia and additional information on clinical heterogeneity and genotype-phenotype relationships.

5.
Cell Rep ; 42(12): 113445, 2023 12 26.
Article En | MEDLINE | ID: mdl-37980560

The INTS11 endonuclease is crucial in modulating gene expression and has only recently been linked to human neurodevelopmental disorders (NDDs). However, how INTS11 participates in human development and disease remains unclear. Here, we identify a homozygous INTS11 variant in two siblings with a severe NDD. The variant impairs INTS11 catalytic activity, supported by its substrate's accumulation, and causes G2/M arrest in patient cells with length-dependent dysregulation of genes involved in mitosis and neural development, including the NDD gene CDKL5. The mutant knockin (KI) in induced pluripotent stem cells (iPSCs) disturbs their mitotic spindle organization and thus leads to slow proliferation and increased apoptosis, possibly through the decreased neurally functional CDKL5-induced extracellular signal-regulated kinase (ERK) pathway inhibition. The generation of neural progenitor cells (NPCs) from the mutant iPSCs is also delayed, with long transcript loss concerning neurogenesis. Our work reveals a mechanism underlying INTS11 dysfunction-caused human NDD and provides an iPSC model for this disease.


Induced Pluripotent Stem Cells , Neurodevelopmental Disorders , Humans , Apoptosis/physiology , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Mitosis/genetics , Neurodevelopmental Disorders/genetics , Neurogenesis/genetics
6.
Hum Reprod ; 38(Supplement_2): ii3-ii13, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37982416

Recent developments in molecular biological technologies and genetic diagnostic methods, accompanying with updates of relevant terminologies, have enabled the improvements of new strategies of preimplantation genetic testing for monogenic (single gene) disorders (PGT-M) to prevent the transmission of inherited diseases. However, there has been much in the way of published consensus on PGT-M. To properly regulate the application of PGT-M, Chinese experts in reproductive medicine and genetics have jointly developed this consensus statement. The consensus includes indications for patient selection, genetic and reproductive counseling, informed consent, diagnostic strategies, report generation, interpretation of results and patient follow-ups. This consensus statement serves to assist in establishment of evidence-based clinical and laboratory practices for PGT-M.


Preimplantation Diagnosis , Female , Humans , Pregnancy , Aneuploidy , Counseling , Genetic Testing/methods , Preimplantation Diagnosis/methods , China
7.
Front Pediatr ; 11: 1177137, 2023.
Article En | MEDLINE | ID: mdl-37593446

The prenatal prevalence of isolated ventriculomegaly is 0.039%-0.087%. Most isolated mild ventriculomegaly (MV) fetuses (>90%) have a favorable prognosis. However, 5.6% to 7.9% of fetuses with isolated MV have adverse neurodevelopmental outcomes. In this study, we reported the first case of prenatal Snijders Blok-Fisher syndrome (OMIM: #618604) caused by a truncating variant of POU3F3 (OMIM: *602480) in a fetus with transient isolated bilateral MV. The results of karyotype analysis, chromosomal microarray analysis, and TORCH infection evaluation for the fetus were all negative. However, a de novo likely pathogenic nonsense variant of NM_006236.3 (POU3F3): c.640C > T [rs1254251078] p.(Q214*) was identified by whole-exome sequencing (WES). Despite sufficient genetic counseling, the mother refused to undertake further brain magnetic resonance imaging (MRI) and decided to keep the fetus. She gave birth to a male infant through a full-term vaginal delivery. With a long-term follow-up, the infant unfortunately gradually presented with delayed motor development. The postnatal brain MRI of the proband showed dysplasia of the corpus callosum and ventriculomegaly. Considering the high probability of misdiagnosis for such cases, we further summarized the prenatal phenotypes from 19 reported patients with variants in POU3F3. The results revealed that 14 patients displayed a normal prenatal ultrasonographic manifestation, while only approximately 26.32% of fetuses showed MV or cysts without structural deformity. Thus our findings expand the variant spectrum of POU3F3 and suggest the importance of undertaking WES and brain MRI when the fetus has isolated bilateral MV.

8.
Ann Neurol ; 94(6): 1136-1154, 2023 12.
Article En | MEDLINE | ID: mdl-37597256

OBJECTIVE: Rare variants of CCNK (cyclin K) give rise to a syndrome with intellectual disability. The purpose of this study was to describe the genotype-phenotype spectrum of CCNK-related syndrome and the underlying molecular mechanisms of pathogenesis. METHODS: We identified a number of de novo CCNK variants in unrelated patients. We generated patient-induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) as disease models. In addition, we constructed NPC-specific Ccnk knockout (KO) mice and performed molecular and morphological analyses. RESULTS: We identified 2 new patients harboring CCNK missense variants and followed-up 3 previous reported patients, which constitute the largest patient population analysis of the disease. We demonstrate that both the patient-derived NPC models and the Ccnk KO mouse displayed deficient NPC proliferation and enhanced apoptotic cell death. RNA sequencing analyses of these NPC models uncovered transcriptomic signatures unique to CCNK-related syndrome, revealing significant changes in genes, including WNT5A, critical for progenitor proliferation and cell death. Further, to confirm WNT5A's role, we conducted rescue experiments using NPC and mouse models. We found that a Wnt5a inhibitor significantly increased proliferation and reduced apoptosis in NPCs derived from patients with CCNK-related syndrome and NPCs in the developing cortex of Ccnk KO mice. INTERPRETATION: We discussed the genotype-phenotype relationship of CCNK-related syndrome. Importantly, we demonstrated that CCNK plays critical roles in NPC proliferation and NPC apoptosis in vivo and in vitro. Together, our study highlights that Wnt5a may serve as a promising therapeutic target for the disease intervention. ANN NEUROL 2023;94:1136-1154.


Intellectual Disability , Neural Stem Cells , Mice , Animals , Humans , Neural Stem Cells/metabolism , Signal Transduction/genetics , Cyclins/metabolism , Apoptosis
9.
Anal Chim Acta ; 1276: 341622, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37573099

CRISPR-Cas12a RNA-guided complexes have been developed to facilitate the rapid and sensitive detection of nucleic acids. However, they are limited by the complexity of the operation, risk of carry-over contamination, and degradation of CRISPR RNA (crRNA). In this study, a Cas12a-based single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA)-mediated one-step diagnostic method (CasDOS) was established to overcome these drawbacks. mD-crRNA consisted of wild-type crRNA (Wt-crRNA) with ssDNA extensions at the 3' and 5' ends. Compared to Wt-crRNA, mD-crRNA exhibited a 100-1000-fold increase in sensitivity in the one-step assay, reducing the cis-cleavage activity of Cas12a to avoid excessive cleavage of the target DNA in the early stages of the reaction, leading to increased amplification and accumulation of the target amplicons, and improved the speed and intensity of the generated fluorescence signal. The detectability of CasDOS was 16.6 aM for the constructed plasmids of Streptococcus agalactiae (GBS), human papillomavirus type 16 (HPV16), and type 18 (HPV18). In clinical trials, CasDOS achieved 100% accuracy in identifying the known genotypes of the five HPV DNA samples. Moreover, CasDOS showed complete concordance with the qPCR results for GBS detection in ten vaginal or cervical swab samples, with a turnaround time from sampling to results within 30 min. In addition, mD-crRNA remained stable after Ribonuclease R treatment, suggesting that it might be more suitable as a raw material for the CRISPR detection kit. In conclusion, we have developed a universal, rapid, and highly sensitive one-step CRISPR detection assay.


Nucleic Acids , RNA , Humans , Female , DNA, Single-Stranded/genetics , CRISPR-Cas Systems , Biological Assay , Nucleic Acid Amplification Techniques
10.
MedComm (2020) ; 4(4): e310, 2023 Aug.
Article En | MEDLINE | ID: mdl-37405277

Clustered regularly interspaced short palindromic repeat (CRISPR)-based biosensors have been developed to facilitate the rapid and sensitive detection of nucleic acids. However, most approaches using CRISPR-based detection have disadvantages associated with the limitations of CRISPR RNA (crRNA), protospacer adjacent motif (PAM) or protospacer flanking sequence restriction, single channel detection, and difficulty in quantitative detection resulting in only some target sites being detected qualitatively. Here, we aimed to develop a barcode-based Cas12a-mediated DNA detection (BCDetection) strategy, which overcomes the aforementioned drawbacks and enables (1) detection with a universal PAM and crRNA without PAM or crRNA restriction, (2) simultaneous detection of multiple targets in a single reaction, and (3) quantitative detection, which can significantly distinguish copy number differences up to as low as a two-fold limit. We could efficiently and simultaneously detect three ß-thalassemia mutations in a single reaction using BCDetection. Notably, samples from normal individuals, spinal muscular atrophy (SMA) carriers, and SMA patients were significantly and accurately distinguished using the quantitative detection ability of BCDetection, indicating its potential application in ß-thalassemia and SMA carrier screening. Therefore, our findings demonstrate that BCDetection provides a new platform for accurate and efficient quantitative detection using CRISPR/Cas12a, highlighting its bioanalytical applications.

11.
Am J Obstet Gynecol MFM ; 5(10): 101072, 2023 Oct.
Article En | MEDLINE | ID: mdl-37393030

BACKGROUND: Soft markers are common prenatal ultrasonographic findings that indicate an increased risk for fetal aneuploidy. However, the association between soft markers and pathogenic or likely pathogenic copy number variations is still unclear, and clinicians lack clarity on which soft markers warrant a recommendation for invasive prenatal genetic testing of the fetus. OBJECTIVE: This study aimed to provide guidance on ordering prenatal genetic testing for fetuses with different soft markers and to elucidate the association between specific types of chromosomal abnormalities and specific ultrasonographic soft markers. STUDY DESIGN: Low-pass genome sequencing was performed for 15,263 fetuses, including 9123 with ultrasonographic soft markers and 6140 with normal ultrasonographic findings. The detection rate of pathogenic or likely pathogenic copy number variants among fetuses with various ultrasonographic soft markers were compared with that of fetuses with normal ultrasonography. The association of soft markers with aneuploidy and pathogenic or likely pathogenic copy number variants were investigated using Fisher exact tests with Bonferroni correction. RESULTS: The detection rate of aneuploidy and pathogenic or likely pathogenic copy number variants was 3.04% (277/9123) and 3.40% (310/9123), respectively, in fetuses with ultrasonographic soft markers. An absent or a hypoplastic nasal bone was the soft marker in the second trimester with the highest diagnostic rate for aneuploidy of 5.22% (83/1591) among all isolated groups. Four types of isolated ultrasonographic soft markers, namely a thickened nuchal fold, single umbilical artery, mild ventriculomegaly, and absent or hypoplastic nasal bone, had higher diagnostic rates for pathogenic or likely pathogenic copy number variants (P<.05; odds ratio, 1.69-3.31). Furthermore, this study found that the 22q11.2 deletion was associated with an aberrant right subclavian artery, whereas the 16p13.11 deletion, 10q26.13-q26.3 deletion, and 8p23.3-p23.1 deletion were associated with a thickened nuchal fold, and the 16p11.2 deletion and 17p11.2 deletion were associated with mild ventriculomegaly (P<.05). CONCLUSION: Ultrasonographic phenotype-based genetic testing should be considered in clinical consultations. Copy number variant analysis is recommended for fetuses with an isolated thickened nuchal fold, a single umbilical artery, mild ventriculomegaly, and an absent or a hypoplastic nasal bone. A comprehensive definition of genotype-phenotype correlations in aneuploidy and pathogenic or likely pathogenic copy number variants could provide better information for genetic counseling.

12.
Front Genet ; 14: 1172947, 2023.
Article En | MEDLINE | ID: mdl-37485339

Background: Citrullinemia type I (CTLN1) is a rare autosomal recessive inborn error of the urea cycle caused by mutations in the gene encoding the arginosuccinate synthetase (ASS1) enzyme. Classic CTLN1 often manifests with acute hyperammonemia and neurological symptoms. Molecular genetic testing is critical for patient diagnosis. Methods: Three unrelated families with clinically suspected CTLN1 were included in this study. Potential pathogenic variants were identified using whole exome sequencing (WES) and validated using Sanger sequencing. Western blotting, quantitative PCR, immunofluorescent staining, and ELISA were used to assess functional changes in candidate ASS1 variants. Results: Five variants were identified, two of which were novel, and one has been reported, but its pathogenicity was not validated. The novel variant c.649-651del (p.P217del) and the 5'UTR variant (c.-4C>T) resulted in a decrease in ASS1 expression at both the protein and transcription levels. The other novel variant, c.1048C>T (p.Q350*), showed a marked decrease in expression at the protein level, with the formation of truncated proteins but an increased transcription. Both c.649_651del (p.P217del) and c.1048C>T (p.Q350*) showed a highly significant reduction in enzyme activity, while c.-4C>T had no effect. Conclusion: We identified two novel variants and a hypomorphic non-coding variant in ASS1 and validated the pathogenicity using functional studies. Our findings contribute to expanding the spectrum of ASS1 variants and understanding the genotype-phenotype relationships of CTLN1.

13.
Thromb Haemost ; 123(12): 1151-1164, 2023 Dec.
Article En | MEDLINE | ID: mdl-37285902

BACKGROUND: Hemophilia A (HA) is the most frequently occurring X-linked bleeding disorder caused by heterogeneous variants in the F8 gene, one of the largest genes known. Conventional molecular analysis of F8 requires a combination of assays, usually including long-range polymerase chain reaction (LR-PCR) or inverse-PCR for inversions, Sanger sequencing or next-generation sequencing for single-nucleotide variants (SNVs) and indels, and multiplex ligation-dependent probe amplification for large deletions or duplications. MATERIALS AND METHODS: This study aimed to develop a LR-PCR and long-read sequencing-based assay termed comprehensive analysis of hemophilia A (CAHEA) for full characterization of F8 variants. The performance of CAHEA was evaluated in 272 samples from 131 HA pedigrees with a wide spectrum of F8 variants by comparing to conventional molecular assays. RESULTS: CAHEA identified F8 variants in all the 131 pedigrees, including 35 intron 22-related gene rearrangements, 3 intron 1 inversion (Inv1), 85 SNVs and indels, 1 large insertion, and 7 large deletions. The accuracy of CAHEA was also confirmed in another set of 14 HA pedigrees. Compared with the conventional methods combined altogether, CAHEA assay demonstrated 100% sensitivity and specificity for identifying various types of F8 variants and had the advantages of directly determining the break regions/points of large inversions, insertions, and deletions, which enabled analyzing the mechanisms of recombination at the junction sites and pathogenicity of the variants. CONCLUSION: CAHEA represents a comprehensive assay toward full characterization of F8 variants including intron 22 and intron 1 inversions, SNVs/indels, and large insertions and deletions, greatly improving the genetic screening and diagnosis for HA.


Hemophilia A , Humans , Hemophilia A/diagnosis , Hemophilia A/genetics , Factor VIII/genetics , Genetic Testing , Introns , Multiplex Polymerase Chain Reaction , Mutation
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 769-780, 2023 Jul 10.
Article Zh | MEDLINE | ID: mdl-37368376

21 hydroxylase deficiency (21-OHD), the most common form of congenital adrenal hyperplasia, is caused by defects in CYP21A2 gene, which encodes the cytochrome P450 oxidase (P450C21) involved in glucocorticoid and mineralocorticoid synthesis. The diagnosis of 21-OHD is based on the comprehensive evaluation of clinical manifestation, biochemical alteration and molecular genetics results. Due to the complex structure of CYP21A2, special techniques are required to perform delicate analysis to avoid the interference of its pseudogene. Recently, the state-of-the-art diagnostic methods were applied to the clinic gradually, including the steroid hormone profiling and third generation sequencing. To standardize the laboratory diagnosis of 21-OHD, this consensus was drafted on the basis of the extensive knowledge, the updated progress and the published consensuses and guidelines worldwide by expert discussion organized by Rare Diseases Group of Pediatric Branch of Chinese Medical Association, Medical Genetics Branch of Chinese Medical Doctor Association, Birth Defect Prevention and Molecular Genetics Branch of China Maternal and Child Health Association. and Molecular Diagnosis Branch of Shanghai Medical Association.


Adrenal Hyperplasia, Congenital , Child , Humans , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/genetics , Steroid 21-Hydroxylase/genetics , Consensus , China , Clinical Laboratory Techniques , Mutation
15.
Int J Mol Sci ; 24(10)2023 May 19.
Article En | MEDLINE | ID: mdl-37240366

Hemophilia B (HB) is an X-linked recessive disease caused by F9 gene mutation and functional coagulation factor IX (FIX) deficiency. Patients suffer from chronic arthritis and death threats owing to excessive bleeding. Compared with traditional treatments, gene therapy for HB has obvious advantages, especially when the hyperactive FIX mutant (FIX-Padua) is used. However, the mechanism by which FIX-Padua works remains ambiguous due to a lack of research models. Here, in situ introduction of F9-Padua mutation was performed in human induced pluripotent stem cells (hiPSCs) via CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs). The hyperactivity of FIX-Padua was confirmed to be 364% of the normal level in edited hiPSCs-derived hepatocytes, providing a reliable model for exploring the mechanism of the hyperactivity of FIX-Padua. Moreover, the F9 cDNA containing F9-Padua was integrated before the F9 initiation codon by CRISPR/Cas9 in iPSCs from an HB patient (HB-hiPSCs). Integrated HB-hiPSCs after off-target screening were differentiated into hepatocytes. The FIX activity in the supernatant of integrated hepatocytes showed a 4.2-fold increase and reached 63.64% of the normal level, suggesting a universal treatment for HB patients with various mutations in F9 exons. Overall, our study provides new approaches for the exploration and development of cell-based gene therapy for HB.


Hemophilia B , Induced Pluripotent Stem Cells , Humans , Hemophilia B/genetics , Hemophilia B/therapy , Mutation , Genetic Therapy
16.
BMC Pregnancy Childbirth ; 23(1): 351, 2023 May 13.
Article En | MEDLINE | ID: mdl-37179315

BACKGROUND: Noninvasive prenatal testing (NIPT) is increasingly used in the clinical prenatal screening of twin pregnancies, and its screening performance for chromosomal abnormalities requires further evaluation. For twin pregnancies with indications for prenatal diagnosis, there is a lack of clinical data to assess the prenatal diagnosis rate (PDR). The aim of this study was to evaluate the screening performance of NIPT for foetal chromosomal abnormalities in twin pregnancies and the PDR in the second and third trimesters. METHODS: Ultrasound scans were carried out for all twin pregnancies between 11 and 13+ 6 gestational weeks. For twin pregnancies with nuchal translucency thickness˂3.0 mm and no foetal structural malformations, NIPT was performed after blood sampling, followed by routine ultrasound monitoring. Women with twin pregnancies who underwent NIPT at the prenatal diagnostic centre of Xiangya Hospital from January 2018 to May 2022 were included in the study. Genetic counselling was offered to each pregnant woman when the NIPT result indicated a high risk of abnormalities or abnormal ultrasonographic (USG) findings were detected. We followed up twin pregnancies for NIPT results, USG findings, prenatal diagnosis results and pregnancy outcomes. RESULTS: In 1754 twin pregnancies, the sensitivity, specificity and positive predictive value of NIPT for trisomy 21 were 100%, 99.9% and 75%, and the corresponding values for sex chromosome aneuploidy (SCA) were 100%, 99.9% and 50%, respectively. For the 14 twin pregnancies for which the NIPT results indicated a high risk of abnormalities, the PDR was 78.6% (11/14). For the 492 twin pregnancies for which the NIPT results indicated a low risk of abnormalities, the rate of USG findings in the second and third trimesters was 39.4% (194/492); of these pregnancies, prenatal diagnosis was recommended for 16.7% (82/492), but it was actually performed in only 8.3% (41/492), and the PDR was 50% (41/82). There was no significant difference in the PDR between the NIPT high-risk and low-risk groups. CONCLUSIONS: The screening performance of NIPT for SCA in twin pregnancies needs to be further evaluated. When abnormal NIPT results or USG findings are used as the main prenatal diagnostic indicator in the second and third trimesters, the PDR is poor.


Noninvasive Prenatal Testing , Pregnancy , Female , Humans , Retrospective Studies , Pregnancy, Twin , Trisomy , Prenatal Diagnosis/methods , Chromosome Aberrations , Aneuploidy
17.
IEEE Trans Med Imaging ; 42(10): 2899-2911, 2023 10.
Article En | MEDLINE | ID: mdl-37079410

Chromosome recognition is a critical way to diagnose various hematological malignancies and genetic diseases, which is however a repetitive and time-consuming process in karyotyping. To explore the relative relation between chromosomes, in this work, we start from a global perspective and learn the contextual interactions and class distribution features between chromosomes within a karyotype. We propose an end-to-end differentiable combinatorial optimization method, KaryoNet, which captures long-range interactions between chromosomes with the proposed Masked Feature Interaction Module (MFIM) and conducts label assignment in a flexible and differentiable way with Deep Assignment Module (DAM). Specially, a Feature Matching Sub-Network is built to predict the mask array for attention computation in MFIM. Lastly, Type and Polarity Prediction Head can predict chromosome type and polarity simultaneously. Extensive experiments on R-band and G-band two clinical datasets demonstrate the merits of the proposed method. For normal karyotypes, the proposed KaryoNet achieves the accuracy of 98.41% on R-band chromosome and 99.58% on G-band chromosome. Owing to the extracted internal relation and class distribution features, KaryoNet can also achieve state-of-the-art performances on karyotypes of patients with different types of numerical abnormalities. The proposed method has been applied to assist clinical karyotype diagnosis. Our code is available at: https://github.com/xiabc612/KaryoNet.


Chromosomes , Humans , Chromosomes/genetics , Karyotyping
18.
Front Genet ; 14: 1115831, 2023.
Article En | MEDLINE | ID: mdl-36968612

Introduction: Hemophilia A (HA) is the most common genetic bleeding disorder caused by mutations in the F8 gene encoding coagulation factor VIII (FVIII). As the second predominant pathogenic mutation in hemophilia A severe patients, F8 Intron one inversion (Inv1) completely splits the F8 gene into two parts and disrupts the F8 transcription, resulting in no FVIII protein production. The part which contains exon 2-exon 26 covers 98% of F8 coding region. Methods: We hypothesized that in situ genetic manipulation of F8 to add a promoter and exon one before the exon two could restore the F8 expression. The donor plasmid included human alpha 1-antitrypsin (hAAT) promoter, exon one and splicing donor site (SD) based on homology-mediated end joining (HMEJ) strategy was targeted addition in hemophilia A patient-derived induced pluripotent stem cell (HA-iPSCs) using CRISPR/Cas9. The iPSCs were differentiated into hepatocyte-like cells (HPLCs). Results: The hAAT promoter and exon one were targeted addition in HA-iPSCs with a high efficiency of 10.19% via HMEJ. The FVIII expression, secretion, and activity were detected in HPLCs derived from gene-targeted iPSCs. Discussion: Thus, we firstly rescued the 140 kb reversion mutation by gene addition of a 975 bp fragment in the HA-iPSCs with Inv1 mutation, providing a promising gene correction strategy for genetic disease with large sequence variants.

19.
Ann Transl Med ; 11(2): 111, 2023 Jan 31.
Article En | MEDLINE | ID: mdl-36819517

Background: Non-invasive prenatal testing (NIPT) has good screening performance for common chromosomes, but it may have false positive (FP) and false negative (FN) results for various reasons. For abnormal NIPT results, the combination of fetal ultrasound phenotypes will provide more fetal information for prenatal diagnosis. The aim of this study was to combine NIPT and ultrasound phenotypes to analyze their complementary roles in prenatal screening of fetal chromosome abnormalities. Methods: From January 2018 to December 2021, 12,803 pregnant women with singleton who successfully underwent NIPT/expanded NIPT (NIPT-Plus) at Xiangya Hospital of Central South University, of which 111 cases were positive results and one case was FN result. We retrospectively collected the clinical features, ultrasonographic findings, prenatal diagnosis, and pregnancy outcomes of these 112 pregnant women and analyzed the ultrasonic manifestations of different chromosomal abnormalities in detail. Results: The positive predictive values (PPVs) of NIPT/NIPT-Plus for trisomy (T)21, T18, sex chromosome abnormality (SCA), microdeletion/microduplication syndrome (MMS), T13, and rare autosomal trisomy (RAT) were 100.0%, 85.7%, 57.1%, 44.4%, 40.0%, and 7.7%, respectively. The total termination rates of pregnancy for T21, T18, T13, SCA, pathogenic MMS, and RAT were 93.5%, 100.0%, 100.0%, 66.7%, 100.0%, and 100.0%, respectively. From the karyotypes of SCA live-born fetuses, 47,XYY and 47,XXX were more likely to be selected for continued pregnancy. The ultrasound phenotypes of T21 were diverse, including normal, soft marker, and structural malformation. Both T18 and T13 had structural malformations as the main phenotypes. Most ultrasound phenotypes of FP T21, T18, and T13 were normal but occasionally manifested as fetal growth restriction (FGR). The ultrasound phenotypes of SCA, MMS, and RAT were relatively mild and manifested as normal, soft marker, FGR, or polyhydramnios, and the ultrasound phenotypes were similar between FP and true positive (TP) cases. Conclusions: Ultrasound phenotypes are helpful in identifying FP NIPT/NIPT-Plus results, especially for T18 and T13. Given its mild ultrasound phenotypes, NIPT-Plus has important clinical significance in reducing the missed diagnosis of SCA, MMS, and RAT, but its screening performance needs to be further improved.

20.
Clin Chem ; 69(3): 239-250, 2023 03 01.
Article En | MEDLINE | ID: mdl-36683393

BACKGROUND: The aim is to evaluate the clinical utility of a long-read sequencing-based approach termed comprehensive analysis of thalassemia alleles (CATSA) in prenatal diagnosis of thalassemia. METHODS: A total of 278 fetuses from at-risk pregnancies identified in thalassemia carrier screening by PCR-based methods were recruited from 9 hospitals, and PCR-based methods were employed for prenatal diagnosis. CATSA was performed retrospectively and blindly for all 278 fetuses. RESULTS: Among the 278 fetuses, 263 (94.6%) had concordant results and 15 (5.4%) had discordant results between the 2 methods. Of the 15 fetuses, 4 had discordant thalassemia variants within the PCR detection range and 11 had additional variants identified by CATSA. Independent PCR and Sanger sequencing confirmed the CATSA results. In total, CATSA and PCR-based methods correctly detected 206 and 191 fetuses with variants, respectively. Thus, CATSA yielded a 7.9% (15 of 191) increment as compared with PCR-based methods. CATSA also corrected the predicted phenotype in 8 fetuses. Specifically, a PCR-based method showed one fetus had homozygous HBB c.52A > T variants, while CATSA determined the variant was heterozygous, which corrected the predicted phenotype from ß-thalassemia major to trait, potentially impacting the pregnancy outcome. CATSA additionally identified α-globin triplicates in 2 fetuses with the heterozygous HBB c.316-197C > T variant, which corrected the predicted phenotype from ß-thalassemia trait to intermedia and changed the disease prognosis. CONCLUSIONS: CATSA represents a more comprehensive and accurate approach that potentially enables more informed genetic counseling and improved clinical outcomes compared to PCR-based methods.


alpha-Thalassemia , beta-Thalassemia , Female , Pregnancy , Humans , Retrospective Studies , Prenatal Diagnosis/methods , beta-Thalassemia/genetics , alpha-Thalassemia/diagnosis , Heterozygote , Genotype
...